Showing posts with label gps. Show all posts
Showing posts with label gps. Show all posts

Car Navigation System

An automotive navigation system is a satellite navigation system designed for use in automobiles. It typically uses a GPS navigation device to acquire position data to locate the user on a road in the unit's map database. Using the road database, the unit can give directions to other locations along roads also in its database. Dead reckoning using distance data from sensors attached to the drivetrain, a gyroscope and an accelerometer can be used for greater reliability, as GPS signal loss and/or multipath can occur due to urban canyons or tunnels.
Some sorts can be taken out of the car and used hand-held while walking.



HISTORY
                     Automotive navigation systems were the subject of extensive experimentation, including some efforts to reach mass markets, prior to the availability of commercial GPS.
Most major technologies required for modern automobile navigation were already established when the microprocessor emerged in the 1970s to support their integration and enhancement by computer software. These technologies subsequently underwent extensive refinement, and a variety of system architectures had been explored by the time practical systems reached the market in the late 1980s. Among the other enhancements of the 1980s was the development of color displays for digital maps and of CD-ROMs for digital map storage. However, there is some question about who made the first commercially available automotive navigation system. There seems to be little room for doubt[says who?] that Etak was first to make available a digital system that used map-matching to improve on dead reckoning instrumentation. Etak's systems, which accessed digital map information stored on standard cassette tapes, arguably made car navigation systems practical for the first time. However, Japanese efforts on both digital and analog systems predate Etak's founding. Steven Lobbezoo developed the first commercially available satellite navigation system for cars. It was produced in Berlin from start 1984 to January 1986. Publicly presented first at the Hannover fair in 1985 in Germany, the system was shown in operation on the evening news (item in the Hannover fair) from the first German television channel in that year. It used a modified IBM PC, a large disc for map data and a flat screen, built into the glove compartment. It was called Homer (after the device from a James Bond movie).
Alpine claims to have created the first automotive navigation system in 1981. However, according to the company's own historical timeline, the company claims to have co-developed an analog automotive navigation product called the Electro Gyrocator, working with Honda. This engineering effort was abandoned in 1985. Although there are reports of the Electro Gyrocator being offered as a dealer option on the Honda Accord in 1981, it's not clear whether an actual product was released, whether any customers took delivery of an Electro Gyrocator-equipped Accord, or even whether the unit appeared in any dealer showrooms; Honda's own official history appears to pronounce the Electro Gyrocator as not practical. See below for Honda's history of the project.
Honda claims to have created the first navigation system starting in 1983, and culminating with general availability in the 1990 Acura Legend. The original analog Electro Gyrocator system used an accelerometer to navigate using inertial navigation, as the GPS system was not yet generally available. However, it appears from Honda's concessions in their own account of the Electro Gyrocator project that Etak actually trumped Honda's analog effort with a truly practical digital system, albeit one whose effective range of operation was limited by the availability of appropriately digitized street map data.
 progress in digital technology would not stop simply because Honda had turned its attention to analog. In 1985, for example, the U.S. company ETAK introduced its own digital map navigation system. Although the system's effective range-the area of geographical coverage-was limited, the announcement was a dour one for Nakamura and his staff. Therefore, ultimately the development of a practical analog system was shelved. The staff experienced indescribable feelings of disappointment. The development of [Honda's] digital map navigation system resumed in 1987, following a three-year hiatus.
Both Mitsubishi Electric and Pioneer claim to be the first with a GPS-based auto navigation system, in 1990. Also in 1990, a draft patent application was filed within Digital Equipment Co. Ltd. for a multi-function device called PageLink that had real-time maps for use in a car listed as one of its functions.
Magellan, a GPS navigation system manufacturer, claims to have created the first GPS-based vehicle navigation system in the U.S. in 1995.
In 1995, Oldsmobile introduced the first GPS navigation system available in a production car, called GuideStar. There also was an Oldsmobile navigation system available as an option as early as 1994 called the Oldsmobile Navigation/Information System. It was an option on the Oldsmobile Eighty Eight.
However it was not until 2000 that the United States made a more accurate GPS signal available for civilian use.
TECHNOLOGY


Visualization
Navigation systems may (or may not) use a combination of any of the following:
top view for the map
top view for the map with the map rotating with the automobile (so that "up" on the map always corresponds to "forward" in the vehicle)
bird's-eye view for the map or the next curve
linear gauge for distance, which is redundant if a rotating map is used
numbers for distance
schematic pictograms
voice prompts




Contents

The road database is a vector map of some area of interest. Street names or numbers and house numbers are encoded as geographic coordinates so that the user can find some desired destination by street address (see map database management).
Points of interest (waypoints) will also be stored with their geographic coordinates. Point of interest specialties include speed cameras, fuel stations, public parking, and "parked here" (or "you parked here").
Contents can be produced by the user base as their cars drive along existing streets (Wi-Fi) and communicating via the internet, yielding a free and up-to-date map.
File:Gosmore in berlin with winCE on transonic 6000.jpg


BMW 5 Series 2011

About this Vehicle


MSRP:  RS-/ 3786750   
Engine: 3L I6
Transmission: Automatic





Review

With the release of the 2011 BMW 5 series, car aficionados are sure to be impressed by the redesigned, more powerful version of the popular luxury sedan. BMW has redesigned it so it looks a lot like the 7 series. but more dynamic and compact. Although the wheelbase in the 2011 model has increased by 3 inches and the length has increased by almost 2, the 5 series does a great job at hiding its size. Although the new version is larger, it looks more sleek and the lines flow seamlessly.

Performance

With an estimated base price of  RS-/ 459,000,0 the 2011 BMW 5 series gives a buyer a lot for their money. As with previous models, BMW offers 3 engines in the U.S. with diesel being offered only in Europe for the time being. The entry level 5 series is the 528i model with a 240 horsepower inline six and single turbo, direct injection. It features slightly more torque at low rpm than previous models. The mid range models are the 530i and 535i. Both come equipped with a 3.0 liter inline six engine and also feature the new single turbo, direct injection. They surely are not lacking in power and performance, putting out 300 hp at 5800 rpm and 300lb of torque at 1200 rpm. The top of the line model is the 550i boasting a twin-turbocharged, 4.4 liter V8 engine. As with the rest of the BMW line of cars and their ever popular M series, BMW will also be releasing an M5 with a power train based on the 550i engine. After being test driven on the Estoril racetrack in Portugal, testers had nothing but rave reviews about the 2011 5 series versus its predecessors. With a chassis that offers four different adjustment settings, it’s as if the driver is getting four cars in one. Drivers that opt for the Sport Package will have their choice between Comfort (for noticeable softness in ride), Normal (ideal for daily driving and long distance), Sport (perfect when sharpened steering, later shifts and aggressive throttle response is required) and Sport Plus (for loosened stability control to allow drifting). There’s also Dynamic Damping Control which will continuously alter the suspension stiffness based on road conditions.

Interior and Exterior

While you may think that what’s under the hood is enough to convince you to get behind the wheel of the new 2011 BMW 5 series, the interior and exteriors are sure to add to your desire. With this model, the company seems to have reverted back to the last 1990s design for its inspiration. The grilles are more rectangular, the headlights are more squared of and the front appears as if it’s slightly tilted forward. All models feature rain-sensing wipes, a sunroof and power heated side mirrors. Depending on the model you choose, you’ll have your choice between 17, 18 or 19 inch wheels.
The interior of the 2011 5 series offers top of the line luxury even in its base model. Technology is not lacking in this series and there’s more electronic assistance than ever. For starters, the transmission shifter and iDrive controller have been taken directly from the upgraded 7 series line. The driver The 528i features eight way power front seats, driver memory functions, dual zone automatic climate control, power tilt and telescopic steering wheel, iDrive control interface, Bluetooth, BMW Assist Emergency Telematics and a 12 speaker CD audio system with HD radio. Upgrade to the 535i and 550i models and you’ll also have access to adaptive cruise control, lane-departure warnings and even a forward facing night vision camera.

Price and Availability

Due to current economic conditions, BMW says that it does not plan on increasing prices for the 2011 model year, and if it does increase prices, it will only be by a small amount. Pricing for the vehicle (with automatic transmission) may run about RS-/ 459,000,0
.
The new 2011 BMW 5 series continues to impress BMW enthusiasts. It features adaptive controls providing 4 different rides in one, it’s comfortable for an every day commute and, at the same time, can compete with most on the track. The new 5 series is a definite standout in its class.











Drivetrain: RWD
Fuel Type: Gas
Curb Weight: 3,814 lbs.














ENGINE TYPES

Engine Types

There are several engine types which are identified by the number of cylinders and the way the cylinders are laid out. Motor vehicles will have from 3 to 12 cylinders which are arranged in the engine block in several configurations. The most popular of them are shown on the left. In-line engines have their cylinders arranged in a row. 3, 4, 5 and 6 cylinder engines commonly use this arrangement. The "V" arrangement uses two banks of cylinders side-by-side and is commonly used in V-6, V-8, V-10 and V-12 configurations. Flat engines use two opposing banks of cylinders and are less common than the other two designs. They are used in Subaru's and Porsches in 4 and 6 cylinder arrangements as well as in the old VW beetles with 4 cylinders. Flat engines are also used in some Ferrari's with 12 cylinders.

Each cylinder contains a piston that travels up and down inside the cylinder bore. All the pistons in the engine are connected through individual connecting rods to a common crankshaft. 


The crankshaft is located below the cylinders on an in-line engine, at the base of the V on a V-type engine and between the cylinder banks on a flat engine. As the pistons move up and down, they turn the crankshaft just like your legs pump up and down to turn the crank that is connected to the pedals of a bicycle.


A cylinder head is bolted to the top of each bank of cylinders to seal the individual cylinders and contain the combustion process that takes place inside the cylinder. The cylinder head contains at least one intake valve and one exhaust valve for each cylinder. This allows the air-fuel mixture to enter the cylinder and the burned exhaust gas to exit the cylinder. Most engines have two valves per cylinder, one intake valve and one exhaust valve. Some newer engines are using multiple intake and exhaust valves per cylinder for increased engine power and efficiency. These engines are sometimes named for the number of valves that they have such as "24 Valve V6" which indicates a V-6 engine with four valves per cylinder. Modern engine designs can use anywhere from 2 to 5 valves per cylinder.


The valves are opened and closed by means of a camshaft. A camshaft is a rotating shaft that has individual lobes for each valve. The lobe is a "bump" on one side of the shaft that pushes against a valve lifter moving it up and down. When the lobe pushes against the lifter, the lifter in turn pushes the valve open. When the lobe rotates away from the lifter, the valve is closed by a spring that is attached to the valve. A very common configuration is to have one camshaft located in the engine block with the lifters connecting to the valves through a series of linkages. The camshaft must be synchronized with the crankshaft so that it makes one revolution for every two revolutions of the crankshaft. In most engines, this is done by a "Timing Chain" (similar to a bicycle chain) that connect the camshaft with the crankshaft. Newer engines have the camshaft located in the cylinder head directly over the valves. This design is more efficient but it is more costly to manufacture and requires multiple camshafts on Flat and V-type engines. It also requires much longer timing chains or timing belts which are prone to wear. Some engines have two camshafts on each head, one for the intake valves and one for the exhaust valves. These engines are called Double Overhead Camshaft (D.O.H.C.) Engines while the other type is called Single Overhead Camshaft (S.O.H.C.) Engines. Engines with the camshaft in the block are called Overhead Valve (O.H.V) Engines.

How Engine Works
Since the same process occurs in each cylinder, we will take a look at one cylinder to see how the four stroke process works. The four strokes are IntakeCompression,Power and Exhaust. The piston travels down on the Intake stroke, up on the Compression stroke, down on the Power stroke and up on the Exhaust stroke.
Intake

As the piston starts down on the Intake stroke, the intake valve opens and the fuel-air mixture is drawn into the cylinder (similar to drawing back the plunger on a hypodermic needle to allow fluid to be drawn into the chamber.) When the piston reaches the bottom of the intake stroke, the intake valve closes, trapping the air-fuel mixture in the cylinder.

Compression

The piston moves up and compresses the trapped air fuel mixture that was brought in by the intake stroke. The amount that the mixture is compressed is determined by the compression ratio of the engine. The compression ratio on the average engine is in the range of 8:1 to 10:1. This means that when the piston reaches the top of the cylinder, the air-fuel mixture is squeezed to about one tenth of its original volume. 

Power

The spark plug fires, igniting the compressed air-fuel mixture which produces a powerful expansion of the vapor. The combustion process pushes the piston down the cylinder with great force turning the crankshaft to provide the power to propel the vehicle. Each piston fires at a different time, determined by the engine firing order. By the time the crankshaft completes two revolutions, each cylinder in the engine will have gone through one power stroke.

Exhaust

With the piston at the bottom of the cylinder, the exhaust valve opens to allow the burned exhaust gas to be expelled to the exhaust system. Since the cylinder contains so much pressure, when the valve opens, the gas is expelled with a violent force (that is why a vehicle without a muffler sounds so loud.) The piston travels up to the top of the cylinder pushing all the exhaust out before closing the exhaust valve in preparation for starting the four stroke process over again. 

Oiling System

Oil is the life-blood of the engine. An engine running without oil will last about as long as a human without blood. Oil is pumped under pressure to all the moving parts of the engine by an oil pump. The oil pump is mounted at the bottom of the engine in the oil pan and is connected by a gear to either the crankshaft or the camshaft. This way, when the engine is turning, the oil pump is pumping. There is an oil pressure sensor near the oil pump that monitors pressure and sends this information to a warning light or a gauge on the dashboard. When you turn the ignition key on, but before you start the car, the oil light should light, indicating that there is no oil pressure yet, but also letting you know that the warning system is working. As soon as you start cranking the engine to start it, the light should go out indicating that there is oil pressure.

Engine Cooling

Internal combustion engines must maintain a stable operating temperature, not too hot and not too cold. With the massive amounts of heat that is generated from the combustion process, if the engine did not have a method for cooling itself, it would quickly self-destruct. Major engine parts can warp causing oil and water leaks and the oil will boil and become useless.
While some engines are air-cooled, the vast majority of engines are liquid cooled. The water pump circulates coolant throughout the engine, hitting the hot areas around the cylinders and heads and then sends the hot coolant to the radiator to be cooled off.
Engine Balance

Flywheel: A 4 cylinder engine produces a power stroke every half crankshaft revolution, an 8 cylinder, every quarter revolution. This means that a V8 will be smother running than a 4. To keep the combustion pulses from generating a vibration, a flywheel is attached to the back of the crankshaft. The flywheel is a disk that is about 12 to 15 inches in diameter. On a standard transmission car, the flywheel is a heavy iron disk that doubles as part of the clutch system. On automatic equipped vehicles, the flywheel is a stamped steel plate that mounts the heavy torque converter. The flywheel uses inertia to smooth out the normal engine pulses.
Balance Shaft: Some engines have an inherent rocking motion that produces an annoying vibration while running. To combat this, engineers employ one or more balance shafts. A balance shaft is a heavy shaft that runs through the engine parallel to the crankshaft. This shaft has large weights that, while spinning, offset the rocking motion of the engine by creating an opposite rocking motion of their own.